University of Puerto Rico

Mayagüez Campus

Electrical and Computer Engineering Department

Project Progress Report

Smart Surveillance Technology

by

[image: image1.png]

Javier Ocasio Pérez, Project Manager, sec. 031

William Sanchez Rosa, sec. 031

Abraham Díaz Santiago, sec. 031

Mariel Martínez Marrero, sec. 030

Dr. Fernando Vega and Dr. Nayda G. Santiago

ICOM 5047 sections 030 and 031

October 29, 2008

Table of Content

81.
Executive Summary

92.
Introduction

93.
Gantt Chart

124.
Work Breakdown Structure

155.
Demonstration of Progress – Software

696.
Demonstration of Progress - Hardware

797.
Integration Efforts

798.
Budget

829.
Future Work

8310.
References

8411.
Appendix

Index of tables
10Table 1: MAS tasks

11Table 2: Web Development tasks

11Table 3: Data Base tasks

12Table 4: Hardware tasks

32Table 5: Microsoft .NET libraries used for Image Decode

43Table 6: MVC Design Patter in ASP.NET

80Table 7: Proposed Hardware Components

80Table 8: Revised Hardware Components

81Table 9: Proposed Budget

81Table 10: Revised Budget

Tables of Figures

18Figure 1: Main Application Window

19Figure 2: Login

19Figure 3: Login Window 1

19Figure 4: Login Window 2

20Figure 5: Start Service

20Figure 6: Run Configuration Wizard

21Figure 7: Configuration Wizard

22Figure 8 : Building Setup

22Figure 9: Building Data Input

23Figure 10: Areas Setup

24Figure 11: Cameras/Sensors Setup

24Figure 12: New Camera

25Figure 13: New sensor

26Figure 14: Schedule

26Figure 15: User Access

27Figure 16: Edit Windows

27Figure 17: Edit Company

28Figure 18: Edit Buildings

28Figure 19: Edit Areas

29Figure 20: Edit Schedule

29Figure 21: Edit User Access

30Figure 22: MAS Flow Chart

32Figure 23: Image acquisition process

33Figure 24: Camera Class definition

34Figure 25: Camera Class methods description

35Figure 26: CameraBehavior Class definition

35Figure 27: Camera Class methods description

36Figure 28: Lab VIEW motion detection algorithm

37Figure 29: AForge.Imaging Filters List

37Figure 30: Test program using AForge Framework

38Figure 31: AForge framework filters used for image acquisition.

38Figure 32: Method for counting pixels.

39Figure 33: AForge Handler Class Integration

39Figure 34: AForge_Handler Class definition

39Figure 35: AForge_Handler methods definition

40Figure 36: Zonet IP Camera

41Figure 37: MAS Administrator Use Case Diagram

42Figure 38: MAS Class Diagram

43Figure 39: MVC Design Pattern

45Figure 40: Before Logging In

45Figure 41: After Logging in global navigation appears

46Figure 42: Monitoring page for one area

46Figure 43: Monitoring page for one area (multiple cameras)

47Figure 44: Possible search criteria for logs

47Figure 45: AJAX Calendar Elements

48Figure 46: List of Logs

49Figure 47: Display of logs results with event data and screenshots of the moment

49Figure 48: If an image is clicked then a larger image will appear

50Figure 49: Criteria for User Search

50Figure 50: List of users

51Figure 51: User Information

51Figure 52: Login Screen

52Figure 53: Global Logout navigation link

52Figure 54: Recent Alarms

52Figure 55: Dynamically populated lists

53Figure 56: Camera Stream

54Figure 57: Sensor and camera information

54Figure 58: Generated Alarms

54Figure 59: User Information

68Figure 60: SST ER Diagram

69Figure 61: Hardware Block Diagram

70Figure 62: Digital Temperature Sensor

70Figure 63: Smoke detector

71Figure 64: Buzzer (Sound Alarm)

71Figure 65: Microcontroller

72Figure 66: Serial Communication Cable

73Figure 67: Microcontroller pins

73Figure 68: TTL-232 Pin Out

74Figure 69: UART connection schematic

74Figure 70: UART connection prototype

75Figure 71: UART Software

76Figure 72: Hyper Terminal Testing

76Figure 73: MAS Interrupt Testing

77Figure 74: Smoke detector connection

78Figure 75: Schematic of n microcontroller and buzzer connection

78Figure 76: Microcontroller and buzzer Prototype

84Figure 77: Gantt System Definition

84Figure 78: Main Application Service

84Figure 79: Gantt Web Development

84Figure 80: Gantt Data Base Development

85Figure 81: Gantt Hardware: Original

85Figure 82: Hardware: Revised

86Figure 83: Administrator Use Case Diagram

87Figure 84: User Use Case Diagram

88Figure 85: Web Application Package Diagram

1. Executive Summary

During this phase of the project, the team members of the VST group worked on the components of Software and Hardware of the Smart Surveillance Technology (SST) system. Research for elements, development tools, and integration tools have been conducted, and all team members are comfortable with their working environment. Progress on both software and hardware has been productively accomplished. The team’s plan has been followed, and the risk management plan has not been taken into action, as no risk has materialized.

In terms of software, the progress has turned out as planned. All the tasks that were due to be completed were successfully done. All software design documents, all tool configurations, and all layout designs were fully finished and ready to start using. The implementation of the MAS (Main Application Service) Administrator interface was done, as well as the web interface layout for monitoring the areas under surveillance. The data base development of the project was also completed.

In terms of hardware the progress has been as expected and has followed the proposed Gantt chart with only slight changes. All the hardware components were acquired and were tested separately. The communication between the microprocessor and the server computer was achieved. Also, the buzzer was connected to the microprocessor and tested to sound by an interrupt given by the computer. The use of a thermistor was changed to use of digital sensor, due to simpler processing for the sensor in the microprocessor. We are currently working in the integration of the sensors with the microprocessor. We decided to change the use of a webcam for an IP camera to make our prototype more scalable. The group decided to divide the SST system into two designs, SST Hawk, the prototype being implemented, which uses serial communication to communicate with the server computer. A second design, called SST Eagle will be provided at the end of the semester, which is a more scalable version of the system, which will communicate using TCP/IP communication.

The project budget, in term of hardware, is below the estimated, as some parts costs were lower than expected. In term of human resources, the project has gone over budget, as the team members have spent more hours than expected in some of the tasks. However, we have still not exceeded the overall planned budget.

2. Introduction

The purpose of our Smart Surveillance technology system is the use of technology to add another series of devices to improve monitoring equipment prone to theft and damage. There are a lot of places where highly sensitive equipment is used and where, not just the equipment, but also processes go on unattended that may need monitoring. There are also high security areas where equipment can be tampered with or where quality can be compromised.

In terms of milestones to date, the SST project has successfully completed Phase 1: Problem Definition, by writing the proposal of the project and presenting the project in the first Oral presentation. SST also successfully completed Phase 2: Data Base and Microprocessor to computer communication, which included the first Happy Hour. The project is currently working in Phase 3: Sensor data collecting. The remaining two phases are Phase 4: Final Prototype and testing, and Phase 5: Final Documentation.

This document presents the progress of our group, by presenting a Gantt Chart section which explains the progress based on the defined timeline and changes to the original Gantt Chart. The document also includes a Work Breakdown Structure section where the tasks that each of the members have been working are mentioned. Then there is a section of demonstration of progress for Software, which is divided in the MAS (Main Application Service), Web Application, and Data Base. Here progress is demonstrated by giving the designs of each part, technical explanations of each of the components, task analysis and diagrams. Then there is a section of demonstration of hardware, which includes a block diagram, design specifications and implementation details. There is also a section of integration efforts. Then, there is a section of budget, were the hardware costs and human resources costs are analyzed. Finally there is a section of Future Work. The document also includes a references section and an appendix.
3. Gantt Chart

As time has passed and the project has been developed, changes to the Gantt chart had to be made in the software and hardware parts of the project.

1.1. Switch data base related tasks and micro processor software communication tasks between Javier Ocasio and William Sanchez. Javier took the data base tasks of the design document and query design and William worked the connection between the server computer and microprocessor with Mariel Martinez. The reason was that William had previous experience working this kind of communication, which Javier had not; also Javier had previous experience with data base development, hence the change made the tasks better distributed.

1.2. Administrator interface was split between GUI interface and Database Connection of interface. William Sanchez worked GUI interface and Javier Ocasio made changes to the GUI and implemented classes and methods to connect the Administrator interface with the data base.

1.3. Changed due date (for later date) for the connection between Microprocessor, temperature, fire(smoke) and alarm task, because of the change of type of temperature sensor to be used. Originally the team planned to use a thermistor, however, the equation for the thermistor is not linear, but of exponential order. Hence, the programming on the microprocessor would be more complicated than expected. For this reason we decided to use a digital temperature sensor. The impact of changing to a temperature sensor, technically, does not changes much, because the resulting temperature will be presented to the user in the same way, the only change is in the implementation of the programming, which will actually be less complicated and should take less time than doing it with the thermistor. In terms of budget, the digital temperature sensor resulted to be less expensive than the thermistor, thus making a positive impact.

1.4. The task of 20 seconds buffer storage was removed from the Gantt Chart task. The reason to have this task was that the motion detection algorithm was planned to do in Lab VIEW. This implementation was imprecise. In order to mitigate that, a buffer per camera was pointed out. Now using AForge .NET library for implementing motion detection algorithm, we will not need an image buffer per camera.

1.5. MAS tasks

All the tasks till date for the MAS were completed. The following table summarizes the completed tasks and the ones that need to be completed.

	Completed Tasks
	To be Completed

	Main Application Design Document
	Collect Microcontroller data

	Decode Camera image
	Verify Microprocessor data for activating system alarm

	Compare images for motion detection
	Software Testing and debugging`

	Administrator Interface
	Upload live streaming images to Web Interface

	
	Store concurrently information collected from Micro

	
	Send SMS Message for alert

Table 1: MAS tasks

1.6. Web Development tasks
All the tasks till date for the Web Development were completed. The following table summarizes the completed tasks and the ones that need to be completed.

	Completed Tasks
	To be Completed

	Web Application Design Document
	Live Stream web page

	Tools Configuration
	Web testing and debugging

	Web Interface design
	

	Security Login
	

	Information display web page
	

Table 2: Web Development tasks
1.7. Data Base tasks

All the tasks till date for the Data Base were completed. The following table summarizes the completed tasks (which are all of them).

	Completed Tasks
	To be Completed

	Data Base Design Document
	

	ER Diagram
	

	Tables
	

	Query Design
	

Table 3: Data Base tasks
1.8. Hardware tasks

All the tasks till date for the Hardware were completed. The following table summarizes the completed tasks and the ones that need to be completed.

	Completed Tasks
	To be Completed

	Hardware design document
	Connection between Microcontroller, temperature , and fire(smoke)

	Buy required Hardware
	Program Micro for signals processing

	Connection between Microprocessor and Server Computer
	Create logic circuit for the fire sensor connection

	Connection between Microcontroller and alarm
	Hardware/Software Tune Up

	
	Complete Prototype Testing

Table 4: Hardware tasks
Pictures of the Original and modified Gantts can be seen in Appendix

2. Work Breakdown Structure

2.1. Javier Ocasio Pérez

2.1.1. Main Application Design Document
· Use Case Diagram
· Class Diagram
2.1.2. Web Application Design Document
· Use Case Diagram
· Package Diagram
2.1.3. Web Interface design
· Users Page Design

· Users Info Page Design

· Web pages testing and debugging

2.1.4. Data Base Design Document
· Mapping explanation
· Entity/Relations explanations
2.1.5. ER Diagram
2.1.6. Data Base Tables Creation

2.1.7. Query Design (queries for insertion and updates necessary for administrator interface)
2.1.8. Administrator Interface
· Data Validation
· Connection of GUI interface with data base
2.1.9. Tools Configuration
2.1.10. Security Login
2.1.11. Management – Meetings, Minutes, blog maintenance
2.2. Abraham Díaz Santiago

2.2.1. Web Application Design Document
2.2.2. Web Interface design
· Login/Logout

· Main Page

· Management of security permissions and navigation display

· Monitor Page
· Data management for dynamic population of menus

· Database data management for sensor and camera tables

· Dynamic image capture from camera to web interface

· Logs Page
· Search controls and dynamic menus for database querying

· Dynamic paging of datasets and links integrations between pages

· Logs Results Page
· Link integration and data and screenshots management

· Users Page data management and link integration

· Connection of Web Interface with Data Base
· Queries execution and DataSets management

· Web pages testing and debugging

2.2.3. Data Base Design Document (Entities/Relations explanation)
2.2.4. Query Design (queries for data display in Web Interface)
2.2.5. Tools Configuration

2.2.6. Live Stream of images from Camera in Web Interface
2.2.7. Send SMS text message development
2.3. William Sanchez Rosa

2.3.1. Main Application Design Document (explanation of functionalities)
2.3.2. Decode Camera image
· Program decodes Camera Image from IP Camera
2.3.3. Web Interface design
· Home Page – display recent alarms
· Web pages testing and debugging

2.3.4. Connection between Microprocessor and Server Computer
· Program that sends interrupt to microprocessor and receives data back to computer
2.3.5. Administrator Interface GUI development
· Configuration Wizard
· Edit Forms
2.3.6. Compare images for motion detection
· Held meeting with Miguel Figueroa to discuss possible implementations of Motion Detection
· Developed Motion Detection module based on open-source algorithm

2.4. Mariel Martínez Marrero
2.4.1. Hardware design document
· Parts Research

· Hardware Block Diagram

· Design specifications
2.4.2. Buy required Hardware
2.4.3. Connection between Microprocessor and Server Computer
· Wrote Assembly code to display data to HyperTerminal according to interrupt given by keyboard
2.4.4. Connection between Micro, temperature , fire(smoke) and alarm

· Connection between Microprocessor and Buzzer
· Wrote subroutine that activates buzzer
· Connection between Microprocessor and Smoke Alarm
· Smoke detector physically connected to board
3. Demonstration of Progress – Software

3.1. Main Application Service (M.A.S.)

The M.A.S. (Main Application Service) will control the logic of the microcontroller, receiving and analyzing its information. It will also decode the incoming image stream from different camera connected in the network, analyzing their data to perceive movement. The MAS also provides an Administrator Interface for configuring and editing the information in the system.

3.1.1. M.A.S. Implementation

The MAS is being implemented using the C# programming language and the .NET Framework. The Microsoft .NET Framework is a software technology that is available with several Microsoft Windows operating systems. It includes a large library of pre-coded solutions to common programming problems and a virtual machine that manages the execution of programs written specifically for the framework [1].

3.1.2. Administrator User Interface

I. Login

For security purposes, when system loads up, it will ask their credentials (user/password). This is used for constraining access into the service. A screen with appear with two fields:

a. UserName Textbox -username

b. Password Textbox - password

c. Login Button – will submit data and verify if credentials are correct

d. Cancel button – close system

II. Main Application Service Window

After user logs in, the main window will completed load up. The system will show the System main section. The interface contains:

a. Menu Strip

i. System – General actions will be accessed from here

1. Login

This option will let the administrator log in the system.

2. Start/Stop Service

This option will start/stop MAS logic of the background functionality.

3. Exit

This option will let the user exit from the system.

ii. Configuration – MAS Configuration tools

1. Run Configuration Wizard

2. Edit

· Company information

· Building mapping

· Area mapping

· Device/Camera Setup

· Schedule mapping

· User access

iii. I/O – Hardware connection issues

1. Camera

2. Devices

III. Configuration Wizard

The configuration Wizard serves as a first time Configuration tool for the SST system. When the user runs the wizard he/she will be able to enter the following information:

a. Company information

The administrator of the system will be able to enter the company name, company owner, company address, city, state, zip code, and telephone number for the company.

b. Building mapping

The administrator will be able to specify the name of the buildings that have areas to be monitored.

c. Area mapping

The administrator will be able to define which areas will be monitored in the defined buildings.

d. Device/Camera Setup

Here the administrator will be able to add devices and cameras to the previously defined areas.

e. Schedule mapping

Here the user will be able to set a schedule of when the system will be monitoring per areas.

f. User access

Here the user will be able to create new users and assign them areas to monitor.

IV. Edit Windows

The edit windows serve as the tool to edit information of the SST system. The administrator will be able to edit the following information:

a. Company information

The administrator of the system will be able to edit the company name, company owner, company address, city, state, zip code, and telephone number for the company.

b. Building mapping

The administrator will be able to edit the name of the buildings that have areas to be monitored.

c. Area mapping

The administrator will be able to edit the defined areas that are monitored in the buildings.

d. Device/Camera Setup

Here the administrator will be able to edit the information of the devices and cameras to the defined areas.

e. Schedule mapping

Here the user will be able to edit the schedule of when the system will be monitoring per areas.

f. User access

Here the user will be able to edit the information of the users of the system and edit the assigned areas to monitor.

V. I/O Window

In the I/O part the user will be able to see information from the camera (images) and from the sensors (sensor data).

3.1.3. Task Analysis

· Main Application Window

[image: image2.png]o Service

Figure 1: Main Application Window

The Main Application Window provides the user with three menu options: System, Configuration and I/O.

· Login

[image: image3.png]

Figure 2: Login
To Login into the administrator interface, the user must go to the Main Application Window and click in the System option. After a drop down menu appears, the user must click the Login Option.

[image: image4.png]Username:

Password:

Figure 3: Login Window 1
[image: image5.png]Username: javi

Password: ™|

Figure 4: Login Window 2
A pop window will appear and will let the user enter its user name and password. After the user inputs the information, the Login button must be pressed. If the user entered the correct data, then the user will gain access to the functionalities of the Main Application.

· Start Service

[image: image6.png]

Figure 5: Start Service
The user will be able to start the background service that will handle the alarm triggering, analyze sensor data and image analysis for motion detection. To do so, the user must click on the System option in the menu, and select the Start Service option.

· Run Configuration Wizard

[image: image7.png]

Figure 6: Run Configuration Wizard
The user will have the option to run a configuration wizard to configure the information on the system. To do so, the user must select the Configuration option in the menu, and then the user must select the Run Configuration Wizard option in the dropdown menu. The configuration wizard will appear.

[image: image8.png]EB Smart Surveillance Technology

Company Overview | Buiding Setup | Area Setup | Camera/Sensors | Scheduie | Users Access |

rfomation

Figure 7: Configuration Wizard
The Configuration wizard will begin with a Company Overview Option, where the user will be able to enter the name of the company, the Address, the State, Zip Code, and telephone number of the Company where the SST System is being deployed. Then the user can click the button labeled with “>>” to continue with the next section of the Configuration Wizard.

[image: image9.png]Click to Add Building
Monzon
Chardon

Figure 8 : Building Setup
The next section in the Configuration Wizard is the Building Setup. Here the user will be able to add buildings to the system. To add a building, the user must click in the Click to Add building link in the Tree View in the interface. A pop up window will appear that will let the user enter the name of the new building.

[image: image10.png]EE pata Input Frame

Enter Building Name

Figure 9: Building Data Input
The next section in the Configuration Wizard is the Area Setup. Here the user will be able to add areas to the previously defined buildings. The user will be able to define various areas by defining a prefix for the area, a delimiter, a lowest number and maximum number. For example the user can define areas for the Monzon building such as M-10 to M-20. Te user can also defined areas one by one by typing them in the Enter area name text box of the Area Setup interface.

[image: image11.png]EE| Smart Surveillance Technology Wizard

Company Overview | Bulding Setup | Area Setup | Camera/Sensors | Scheduie | Users Access |

Select a bulding from the st Monzon

gwio
gwi
gwiz
gws
gwe
gwis
gws
gwi7
gwe
gws
Ova

Single frea Ertry

Sumarane: [| [ihm

Figure 10: Areas Setup
The next section in the Configuration Wizard is the Camera/Sensors. Here the user will be able to add cameras or sensors to the devices of each of the defined areas.

[image: image12.png]EE| Smart Surveillance Technology Wizard

Company Overview | Buiding Setup | Area Setup | Camera/Sensors | Schedule | Users Access |

Resource selection Buidng and reas

St anwpmen

Camera name:

w10
w1
w12
w13
i
w15
w16
w7
wig
s

Area Device Ifo

s
p—
oo

Figure 11: Cameras/Sensors Setup
The user will be able to add a new Camera by selecting Camera in the Equipments Combo Box, then pressing the new button. A pop window will appear that will let the user input the information of the new camera.

[image: image13.png]£ New Camera

Figure 12: New Camera
The user will also be able to enter new sensors by selecting Device in the Equipments Combo Box, then pressing the new button. A pop window will appear that will let the user input the information of the new sensor.

[image: image14.png]E8] New Sensor.

Figure 13: New sensor
The next section in the Configuration Wizard is the Schedule. Here the user will be able to assign a schedule of when the system will be checking for alarm triggering. The user has the option of selecting the areas per building where they want to assign a schedule. The schedule has starting and ending date, if the schedule is weekly, monthly or yearly, and which days of the week the schedule is active.

[image: image15.png]EE| Smart Surveillance Technology Wizard

Company Overview | Buiding Setup | Area Setup | Camera/Sensors | Schedule | Users Access

Buidng and Areas Schedule

From:

0 v M v w0 v [v

TwOweOdmOF Osa0su
© Monthly

Figure 14: Schedule
The last section in the Configuration Wizard is the users Access. Here the user can create new users and assign them to the previously created areas.

[image: image16.png]Company Overvien | Bulding Setup | Area Setup | Camera/Sensars | Schedue | Users Acosss |

Create new user:

User List

Buidng and Areas

Figure 15: User Access
· Edit Windows

The user will be able to access the Edit windows by going to the Configure option in the menu and selecting Edit, and then the desired option to edit.

[image: image17.png]System

Configuration | 10
Run Configuration Wizard

Buiding Mapping
Area Mapping
‘CamerajDevice Setup
‘Schedue Mapping
User Access

Figure 16: Edit Windows
Following are screen shots of the Edit windows available to edit the information in the system, which include Company Information, Buildings, Building/Area Mapping, Area Schedules and User Access.

[image: image18.png]EE] Editing : Company Information

Irfomation

Name: Company1

State:

Zip Code:

Telephone:

Figure 17: Edit Company
[image: image19.png]| Editing : Buildi

= Company
Click to Add Building

Figure 18: Edit Buildings
[image: image20.png]EE) Editing : Building/Area Mapping.

Select a bulding from the st

Buidng-Area Preview

Name Fomat

Enter name Prefi

Erter Delmeter.

Lowest Number

Madmum Number

Append Area Lit

Single frea Ertry

Areasto be added:

o

Erter area name:

Figure 19: Edit Areas
[image: image21.png]EE) Editing : Area Schedules

Buidng and reas Schedule

Figure 20: Edit Schedule
[image: image22.png]¥ Editing : User Access

Create new user:

Buidng and Areas

Figure 21: Edit User Access
3.1.4. Background Service Functionality

Aside from the Administrator interface, the MAS have a background functionality explained in the following sections.

I. Flow Chart
[image: image23.png]System
Halted

Waiting for
interacton.

[——»{System Starup.

o

 he camend
functional?

s

Was
nialzation
uccossil?

Yes

[Feh Samera |
es ame and sre
o e
e e Sendam
of and compare oo moges™ Youn{ dgnac
it icassnioler
N l
H Storesaus
o oo
Storsmage coren o D5
feres cata om soral
o e e o fon I
T
" Aerwserva
St45 £
BN ves
No Carometor
dteenthan
oot Camera
frame stoage
o e
andawar
Gserinpt

Flush bufer
information

Figure 22: MAS Flow Chart
II. Camera Behavior

The M.A.S. background service will get images from the IP cameras and analyze their images when the schedule says it must do so. If it detects movement when it is not supposed to, it will generate a movement alarm.

A. Image Decoding

One of the services that the main application service supports is the one of image acquisition and decoding from a specific target camera. This service will be part of a subsequence of events that handle part of the motion detection algorithm and play a vital role on it. Software implementations are made in modules, making the system easier to escalate in the future when implementing the final prototype. IP Cameras have two different types of accessing its live streaming; JPEG and MJPEG streams. JPEG stream refers to a static image. This image is created and stored into the camera buffer at the moment the request is executed. MJPEG stream is a live streaming instance of the camera translated into the mjpeg format. Most of the motion detection algorithms are based on frames (single image of the live feed), and due to the nature of the project (motion detection implementation) the decision of managing JPEG stream was decided.

Microsoft .NET framework 2.0 provides a large amount of libraries that are being used for making our implementation a more formal, modular and efficient one. Among the libraries for web request/data acquisition are the followings (information taken from msdn.microsoft.com):

	Library Name
	Library Description

	HttpWebRequest

	The HttpWebRequest class provides support for the properties and methods defined in WebRequest and for additional properties and methods that enable the user to interact directly with servers using HTTP.

	WebResponse

	The WebResponse class is the abstract (Must Inherit in Visual Basic) base class from which protocol-specific response classes are derived. Applications can participate in request and response transactions in a protocol-agnostic manner using instances of the WebResponse class while protocol-specific classes derived from WebResponse carry out the details of the request.

	Stream

	Stream is the abstract base class of all streams. A stream is an abstraction of a sequence of bytes, such as a file, an input/output device, an inter-process communication pipe, or a TCP/IP socket. The Stream class and its derived classes provide a generic view of these different types of input and output, isolating the programmer from the specific details of the operating system and the underlying devices.

	Bitmap

	A bitmap consists of the pixel data for a graphics image and its attributes. There are many standard formats for saving a bitmap to a file. GDI+ supports the following file formats: BMP, GIF, EXIG, JPG, PNG and TIFF.

Table 5: Microsoft .NET libraries used for Image Decode

HttpWebRequest class will construct a request object for managing the data from the source IP. As C# being an object oriented program, it’s always best to encapsulate the information for achieve a better way to handle the data. As for WebResponse, will store the response executed from the HttpWebRequest. That object will be used later for parsing the data into a byte array. The Stream class will collect the WebResponse information and parse the image structure into a byte array, preparing the data for converting into a proper image format. The Bitmap class will use the byte array created by the Stream class and construct a valid image format, attaching it into the camera view window.

B. Image Acquisition Process

[image: image24.wmf]Init Camera

Object

Fetch camera IP

Prepare

HttpWebRequest

Object

Read Stream and

store into

bytes array

Create Bitmap

from Stream

detectMotion

()

Sleep

1000

ms

Is process

alive

?

Yes

Dispose

Camera

Object

No

Figure 23: Image acquisition process
The process of image acquisition (previous diagram) will build a camera object with the information acquired from the server data base. This information will provide the current camera IP that needs the image to be decoded. With this information, a process of HttpWebRequest will be initiated. This process will use a Stream parser which capture the image and store the pixel information into a byte arrays. A bitmap image is created from that array, using that frame to call the startCamMonitoring () method and placing the current thread to sleep for 1000ms. After that, the process will verify if it has been killed so will do the necessary steps to dispose the resources.

C. Camera Class

In order to manage information from multiple cameras in a proper way, a class called Camera was designed. The camera class object will help the main application procedures encapsulating all information fetched from the server data base. The class definition and methods descriptions are as follows:

[image: image25.jpg]Camera
Ciazs

® Fields
Properties

cameraName : string
camIP : string

camManufact : string
camPassword :string

@ Camera() (+ 1 overload)

Figure 24: Camera Class definition

[image: image26.jpg]Methods
% Camera
(sime
L sManuf
r
L sser
s

@ Canera
properties

R camerstisme
F camp

2 comvianufact
F capssiors
2 camuserName

stg
stng
stng
stg
stog

sng
strog
stng
stog
string

subic
Noe
Hore
Hore
Noe
None

aubic

publc
aubic
aubic
pubic
‘puble

Constuctor by Parameters
Camera Name:

Camera Manufacturer
Comera P

Camera Usemame.
Camera pessivord

Default Constructor

Name of the Camera
PILRLOf P Camera
Camera Menufecturer
CameraPassivord
Camera User Logn

Figure 25: Camera Class methods description
D. CameraBehavior

Camera image decoding implementation was designed in a way to be able to support multiple cameras request at the same time. Although this prototype implementation need to support only one camera, system software development is being done in a scalable way, so minor changes needed to be done to the main application service when developing the EAGLE prototype (this system design will be delivered at the end of the semester).

In order to support multiple camera decoding – image motion detection, the CameraBehavior class was designed. The class will fetch all the information from the server data base, encapsulate that data into a List of camera objects (List<Camera> cameraList), and for each Camera object will start a startCamMonitoring () thread for the decoding – motion detection algorithm. The class definition and methods descriptions are as follows:

[image: image27.jpg]‘CameraBehavior
Class

o Feds
o comeraist: List<Camera>
& propertes
5 Cameraist: ist<Camere>

& Methods
4 Camerabehavior()
3 fetchactiveCameras(): bool
@ reset(): void
startCamMonitoring0): void
startCamService() : void
stopCamService) : void

Figure 26: CameraBehavior Class definition
[image: image28.jpg]Hethods.
@ -9 CameraBehavior
49 fechactvecamerss
o 9 e
8 59 suricamvontorng
BV startCamService
&9 stopCamService
=4
Properties
P Cameralist

subic
bool priate
vod pate
vod prwate
vod puble
vod pubic
Ust<Capuble

Defaut Constructar
Insertnto Camera Lis o avalibie Cameras

Cear uffers

For each camers abject starta tread it an aforge _hander object
Start s for camera Img verfiton

Stop service for camera Img verfication

R e TS R aE

Figure 27: Camera Class methods description
E. Motion Detection

Motion detection is one of many items that the Smart Surveillance Technology will include. For making the prototype cost-effective and multi-featured, motion detection has been decided to be done in a software algorithm. There are different types of software techniques and tools for implementing a motion detection algorithm. Since a group member had a good background with Lab VIEW technology, that tool programming technique was chosen as our first approach.

Lab VIEW

The prototype approach of Lab VIEW’s motion detection algorithm was using a NI library extension called NI Vision Acquisition. The libraries do a comparison between images. If the images are different, it throws a Boolean to notify the difference between images.

	[image: image29.jpg]

	[image: image30.jpg]

	[image: image31.jpg]

Figure 28: Lab VIEW motion detection algorithm

Using parameters, the software can have a certain grade of acceptation when comparing images. What the algorithm does is to find a certain predefined frame (set as the initial frame) in the following frames that the software acquire, applying a threshold filter for highlighting specific areas and doing a math subtraction among the pixels to determine the difference between frames. But the main issue was that this idea target was a straight pixel comparison between two images. Using this technique in motion detection algorithms can lead the comparison into errors, due to the light, noise, and other external factors. Besides, suggestions from our clients pointed the team out that a new methodology is needed to achieve a better motion detection algorithm.
AForge Framework

Among the different options, a .NET framework called AForge was chosen due to the extended libraries functionalities. AForge is a dedicated C# framework aimed for the Computer Vision and Artificial Intelligence field for the usage of image processing, neural networks, genetic algorithms, machine learning, among others. The following are the main 5 libraries of the AForge framework:

· AForge. Imaging – library dedicated for image processing routines and filters.
· AForge.Neuro - library introduced for neural network computation.
· AForge. Genetic – library dedicated for evolution programming technique.
· AForge. Vision - computer vision library.
· AForge. Machine Learning – library for data acquisition and machine learning process.

The comparison of images done by this framework is more reliable than the approach of the Lab View algorithm due the complexity and variety of filters applied to the frames. The motion detection using AForge is not just a comparison between two frames after an amount of time. It analyzes the distributed motion activity based on temporal texture comparing compact objects on the basis of their activities. The following is a list of some filters provided by the AForge framework.

	[image: image32.jpg]i
5 %5 Adeptiesroot

e
% smencas

® % sayetiens

&Y soriers

© % o

i® % sotorvat

6% snghmesscarecsen
® % suresen

® % ComyegeDetecr
&% ot

® % camased

5% Canasvore

&% Crarvaterng

® % Coang

®% Couerrg

8% Coorenseong

& % ComnextecCampanentatabeing
® % Concesapresrooting
&% Convascorecten

& % Convastsvetsn

® % Convton

& % Gt

8 %cm

® % offeence

&% e
% Distazon

® % zsges

& 4 rosen

& % EroDffusenditerng
® % EronfAanTosantieghbos
& pakebib s

	[image: image33.jpg]543 ExtractBiggestBlob
; 45 Exractchamel

: 4 Fierany oy

: 4 ey oo

) 4 FiterAnyTodeyensamesize
; 4 rliranyToneans

: 4 FlerdnyTosnycsnsCopy
e
: 9 FlranyTocray

) 9 StercoTocos

;4 FhteColorTacoerpartl

; 4 rlercdorTocey

4 el Tocor

: % FrecayTouey

; 4 FitreyTobrersanesie
: 9 ey Tosrayparta

! 4 iy Ty anacny

) 4 ity TotraysnaCom el
5 4 rlettertor

) 4 Fheesi

;4 FhieRotate

; 9 rltsseance

: 4 Fatreccorecion

| 4 FoycstentacDiterns

: 4 Gammacorecton

; 45 Gassarbur

o Gy

;4 GapscaRsTs

; 45 Grayscaiy

£ ——

;4 oot

: 4 Fstogsrcasasion

P o

	[image: image34.jpg]# % rstriemng

& % it

5 % rasvadfe

5 Tier

& =0 TPt
 ~© Iecoartariter
[

% et

% TeraneTrveshold
& % e denmeDibarns
i % e

£ % loaoer

5 % Nestasriar
Shun

o % vecn
e
g

© % v

% MoveToneres

o % oparing

5 % coenrs

& 9 ordeecdibeng
& % OtmThreshold

% Poclte

5 % Repcachanmel

© % Reszebibe
T
T ————
® % Rowtesahe

& % Rarsinesr

& % RotateChannels
150 ki araigbor:

	[image: image35.jpg]& 93 OtsuThreshold
5 % Peloie

5 % Replcecramel
% Remaine

% Reszesinear

% Reszeiearetiegiar
% Rotsasan:

5 % Roteesineer

% % Rotrecramets

5 % Rotsmesestiezbor
PR e ——y

4 % SsturstonComezten
@ % s

4 shaven

5 % Srapertc

8 % s

% Serabiterny

& %% SmpleSieletonzaton
% sistvesnold

4 % Scbeepedetecar

& % SteverssmicaDiteing
% Sudpitern

% et

@ % Teveie

% Tearedvege

% T

@ % e

g TrveshaidvitnCarry.
%8 Topnt

@ % 1e0mamel
& % Ycsorierng

& % Cbcrinesr

o Moo I

Figure 29: AForge.Imaging Filters List
[image: image36.jpg]

Figure 30: Test program using AForge Framework

From the previous list, combinations of the following filters were applied to be able to catch and perceive motion detection. After merging the filters to reduce image noise, effect of the light and distortion caused by image compression, pixel count iteration is made to

identify those pixels that were different.
	private IFilter
grayscaleFilter = new GrayscaleBT709();

private Difference differenceFilter = new Difference();

private Threshold thresholdFilter = new Threshold(15);

private IFilter openingFilter = new Opening();

private IFilter edgesFilter = new Edges();

private Merge mergeFilter = new Merge();

private IFilter extrachChannel = new ExtractChannel(RGB.R);

private ReplaceChannel replaceChannel = new ReplaceChannel(RGB.R, null);

private MoveTowards moveTowardsFilter = new MoveTowards();

Figure 31: AForge framework filters used for image acquisition.

	// Calculate white pixels

 private int CalculateWhitePixels(BitmapData bitmapData)

{

int count = 0;

 int offset = bitmapData.Stride - width;

unsafe

{

 byte* ptr = (byte*) bitmapData.Scan0.ToPointer();

for (int y = 0; y < height; y++)

for (int x = 0; x < width; x++, ptr++)

count += ((*ptr) >> 7);

ptr += offset;

}

return count;

}

Figure 32: Method for counting pixels.

Merge: Main Application and AForge Framework

[image: image37.emf]Main Application

Service

Button

AForge Framework

AForge

Handler

Class

Figure 33: AForge Handler Class Integration

In order to maintain integrity of the AForge Library (we don’t want to change any of the code inside the library) a class for handling both Main Application request and AForge framework methods were created. This class will acquire all the encapsulated information fetched from the server data base by the CameraBehavior class and will call the necessary AForge components (filters, channel removal, etc…) for the motion detection sequence.

[image: image38.jpg]AForge_Handler

Py
* Fields
= propertes
Camera : Camera
Cameraiindow : Cameratiindon
= Methods

@ Arorge_Handler)
59 Closerie):void

9 moritor_Star() : void
3% Openvideosouree
vents

¥ EaMotionDetected :Eventiandler

oid

Figure 34: AForge_Handler Class definition
[image: image39.jpg]F % Arorge_rander

® ¥ CloseFle

F 9 montr Start

% 5 Openicessource
% <add metno

Properties
2 camera
2 Camerawindon
=

fiekds

events
EvivotorDetected

v
e
e

Comers
Comeraindon

Eventronder

public
private
oublic

private

publec
publc

public

Defat Consirucior
Dispose theresources, dosng a v abiecs.

Start 2 PEGSwean stresn maniarng

Vit the I of the Camers, stat the mage accuision.

motn.Camers abjec rom AForge cstom object.
Used for attang the urent Same to a ptre img box

‘Bicraas when woltn B dedied from rolon SSiecker S

Figure 35: AForge_Handler methods definition
III. IP Camera

The camera to be used is the Zonet ZVC7610 Network Camera, with a maximum resolution of 640 x 480 pixels.

[image: image40.png]

Figure 36: Zonet IP Camera
IV. Decode microprocessor signals

The M.A.S will analyze the signals coming from the microprocessor and will determine if an alarm is triggered based on the stored information of acceptable levels for each sensor.

V. Image Upload Transfer

The M.A.S. will store the images when an alarm occurs and will upload the images to a web server, so that the user can see what happened.
VI. Analyze inputs logic for alert system activation

a- Alarm – send an alarm signal to the microprocessor to turn on a buzzer

b- Email – send an e-mail to the users letting know that an alarm was generated

c- Sms – send an sms text message to the users phones alerting of the situation

3.1.5. Administrator Interface Use Case Diagram

[image: image41.emf]Configure

Edit

Access MAS

Login

Logout

Administrator

Configure Buildings

Configure Company

Information

Manage User

Create Users

Edit Users

Delete Users

Configure Areas

Configure Schedules

Configure Device

Configure Camera

Edit Company

Information

Edit Buildings

Configure Areas

Edit Device

Edit Camera

Edit Schedules

Figure 37: MAS Administrator Use Case Diagram
3.1.6. M.A.S Class Diagram

[image: image42.emf]String: msUserName

String: msPassword

String: msUserFirstName

String: msUserLastName

String: msUserEmail

String: msPhone

User

List: moLAreaList

String: msBuildingName

Building

String: msAreaName

String: msAreaBuilding

String: msAreaBuilding

Device: moDevice

List: moLCamList

Schedule: moSchedule

List: moLUser

Area

String: msCameraName

String msCamManufact

String: msCamIP

String: msCamUserName

String msCamPassword

Camera

String msDeviceName

String msDeviceCapacity

String msDeviceConnType

String msDeviceIP

Device

DateTime oStartTime

DateTime oEndTime

String msDaysOfWeek

Schedule

String msSensorName

String msSensorType

String msSensorManufact

double mfSensorMin

double mfSensorMax

Sensor

ISA

Administrator

Assigns

Has

Monitors

Has

Has

Has

Has

Creates Configures

Configures

Figure 38: MAS Class Diagram
3.2. Web Application

This section presents the design of the Smart Surveillance Technology (SST) System Web Application. It explains in detail how the web application is implemented, the modules that the web application has, the kinds of users that are allowed to use it, and some diagrams such as Use Case Diagrams, and a Package Diagram used to simplify the explanation of the web page design.
3.2.1. Implementation

The VST- Advanced Security Monitoring System is being created using the standard of Model-View-Controller (MVC). This design schema is composed of three parts the first one is the View, this is the actual interface or web pages that the user interacts with and where the data polled from the database will be displayed. The Controller is composed of Code-Behind C# Classes these manage the flow of data and actions performed, it also manages triggers from the View. At last the Model is composed of C# Classes that are the actual data objects and polling sequences that search and mold the data requested from the database and represent some logic that the user will never see and that runs on the server. Figure 4 depicts a block diagram of the MVC Design Pattern.

[image: image43.png]

Figure 39: MVC Design Pattern
	View
	Controller
	Model

	What: Web pages

Description: HTML & ASP (tag elements and C# language)

Format: File.aspx
	What: C# code of each page

Description: The code that handles de users requests

Format: File.aspx.cs
	What: C# Classes

Description: C# classes that represents business logic objects that are used to access the SST data

Format: Class.cs

Table 6: MVC Design Patter in ASP.NET
The purpose of this code and logic separation is first of all security; removing database access code from the user is a safety measure. Secondly server load, by rendering the view only once and controlling how the data will be polled from the database on the background we decrease the amount of times the database server is under stress and diminish the HTTP server load when many users are connected at once. Thirdly the graphical rendering aspect of it comes in play; we could make changes to the appearance on the web pages without it affecting the logic of the pages and vice versa.

We chose to develop the web application in ASP.NET because the Main Application Server was already using the .NET library and integration with it would be easier. The decision to upgrade to Visual Studio 2008 and the 3.5 .NET Framework was done to utilize some of the newer ASP AJAX objects for easier data display. The web pages are written in a mixture of ASP (Active Server Pages), HTML (Hypertext Markup Language) and JavaScript but the code behind that manages the logic was done in C#; the use of a same language for logic programming on the MAS and web application made work between multiple engineers easier. The main object that was used in the web application was the DataSet, this object has the ability to fill itself with the raw data from the database and maintain its structure, and this means that the tables, columns and rows polled from the database can be accessed in the same way inside of the .NET environment. Also utilizing ASP objects like Gridviews and DataLists we are able to bind then by creating Item Templates directly to this DataSet making rendering easier.

Because connections in HTTP are intermittent (consisting of requests and responses) any measure taken to minimize those request for a complete page are considered a benefit for the server. This is the reason we used AJAX (Asynchronous JavaScript and XML) to alleviate server load and to increase the functionality and speed of the user interface. AJAX is an open technology and can be used in many languages like JSP, PHP, and in our case ASP with the added benefit that ASP has object that incorporate ASP seamlessly for the developer. We used this technology in various parts of the project including menus and for the live view of the ip camera.

The graphical interface and layout design was implemented using CSS (Cascading Style Sheets), this technology enables us to inherit the same layout, fonts and margins to all pages without having to strictly change each page. This process is widely used in the industry because it allows graphic designers to quickly change a whole web site in less time and not affecting the logic of the site. Other benefit from using CSS is that page rendering takes less time in the browser because of less code embedded into each page.
Not directly seen by the user but working on the background is the SMS (Short Message Service) and Email interface for the Main Application Server. This was done by using the .NET Mail Library (System.Net.Mail) This API enables to connect to an external SMTP (Simple Mail Transfer Protocol) Server with the required credentials and avoid having to run another server on the machine. A proxy form had to be implemented because of the constraint of blocked ports inside the campus network, this means that to be able to send SMS and email a web application will be invoked and that will then forward the data to another web application outside the campus network. This proxy was done by using the common Request and Responses from HTTP.
The connection between the web interface and the database was done by using the ODBC 5.1 (Database Connectivity) driver from Microsoft. The use of the proprietary (but open) MySQL connector (which is faster that the ODBC driver) was not implemented because the compilation (for medium trust execution inside campus) and inclusion of this library into the web application would make the whole application bigger in size. Using the driver we designed our connections and queries to access the necessary data from the database.

3.2.2. User Permissions Constraint

A distinction was made regarding the roles of users logging into the system. If the user logged on is an administrator it will have access to other users information, but normal user will not see this option. This maintains a higher security clearance need for user information sharing.
3.2.3. Web Application Logic

The web application is composed of several parts, each one with a specific task from navigation to displaying each user’s information. The user experience begins with a Home page on which the Login screen is encountered. If the user tried to enter any other page, it will be redirected to the home page without displaying the information of the other page on the screen.

· Site Navigation

The navigation of the site is concurrent on each page except for the Users page which can only be accessed by administrator. By maintaining the same navigation the user can easily move from page to page with minimal input. Also an option of highlighting the current tab selected was implemented on the CSS layout for user orientation.

[image: image44.jpg]HomE

Figure 40: Before Logging In
[image: image45.jpg]HOME

MONITOR

LoGs

USERS

USER INFO

LoGouT

Figure 41: After Logging in global navigation appears
· Monitor Page

After that a range of things can be done, on the monitoring page the user can find an area by looking for a building and then the area list will appear. As soon as an area is clicked the information for that area (sensors and cameras) will be displayed and in case there are multiple cameras a clickable list appears in order to choose the live feed for that camera. The left side menu was implemented using AJAX for dynamic performance. The Tables seen on the right are data directly polled from the DB and rendered with this formatting.

Also the page was implemented in such a way that it can toggle between two modes, one is search of area and displaying of data and the other one is if there is a parameter in the Request it will take that parameter get the area name for that parameter and then grab the data from the DB to be displayed for that area. This was needed in order to interface with the SMS URL sent to the users in case of alarm and to view the area linked from any other part of the site.

[image: image46.jpg]

Figure 42: Monitoring page for one area
[image: image47.jpg]

Figure 43: Monitoring page for one area (multiple cameras)
· Logs Page

The Logs Page serves as the central place for the user to look into alarms that have occurred in the past and refine its results by searching for specific criteria (if no criteria is specified all logs will be presented).

[image: image48.jpg]ch Logs:
Sear

by

Figure 44: Possible search criteria for logs
[image: image49.jpg]Select Date Period

From:

28 2930 1 2 3 4
5 6 7 8 9 101
12 13 14 15 16 17 18
19 20 21 22 23 24 25

28 2930 1 2 3 4
5 6 7 8 9 101
12 13 14 15 16 17 18
19 20 21 22 23 24 25
2627/ 28 29 30 31 1

Figure 45: AJAX Calendar Elements

Some fields are generated and managed with the use of AJAX, Search by date is one of them.
[image: image50.jpg]

Figure 46: List of Logs

Logs are sorted by date and when clicked it will take the user into each event details. Also the area can be clicked and it will take the user into the monitoring page to check data.

· Logs Results Page

When a log is clicked the results page appears and along with it the data from the alarm and screenshots of the event when it happened.

[image: image51.jpg]

Figure 47: Display of logs results with event data and screenshots of the moment

[image: image52.jpg]

Figure 48: If an image is clicked then a larger image will appear
· Users Page

Users can be search by different criteria (only if user is an administrator), only basic information appears on this page
[image: image53.jpg]Home | moniToR | Locs

Search vsers

b

T ~|(Seeh]

D
Fist tame.
Last name
Usermamo

i
=
Buidng
[Rle

Figure 49: Criteria for User Search
[image: image54.jpg]i e —

e asesssearetcom

Figure 50: List of users
As results only basic information is displayed. Fields (ID, First Name, Last Name) are clickable, this means that when the user clicks on a field they will be redirected to the User Info Page with a more detailed description.

· User Info Page

Here the user will be redirected from User Search sending the parameter of user id as part of the request using the HTTP’s GET command. The user can also go to this page directly and then its own information will be displayed getting the user id from the session as it was loaded into it at Login.

[image: image55.jpg]

Figure 51: User Information
Detailed information from the user (or user search result) is displayed along with a dynamically populated table with the assigned areas for the user.

3.2.4. Use Case Diagram

See Appendix for User and Administrator Use Case Diagrams.

3.2.5. Package Diagram

See Appendix for the Web Application Package Diagram.

3.2.6. Task Analysis

· Login/Logout

When the user logs into the system a global Logout Tab appear in the main navigation, this will end the session and destroy any data from the user on the server (This also happens when the browser is closed). If the user is not logged in no other page besides the default page will be accessible. Each other page has the directive to redirect and not render any data onto the browser if the user is not logged in. As soon as the user logs in the username and password are verified against the database and the user id is stored in the session.

[image: image56.jpg]L T———
please enter your credentials.

p—

[remerber me

Figure 52: Login Screen

[image: image57.jpg]LoGouT

Figure 53: Global Logout navigation link
· Recent Events (Newest Alarms)

As soon as the user enters the homepage (after login) the most recent events are displayed. This is done to make the user aware of the situation and to verify this areas on its own for any more future troubles.

[image: image58.jpg]Welcome to our remote monitoring page.

To get you stared here a some of the laest s

At Data: 9/26/2008 12:24:26 M Alarm #: 2 Caused by: Tamperatare Valus

4 Dote: 9/26/2000 12:24:26 PH Alorm 2: 2 Coused by: Temperature Vol
|

4 Dote: 9/26/2008 12:24:26 PH Al £: 2 Catsed by Temperature Valse:

4ot 5/26/ 2008 122426 P Al 25 Covod by Temperturs ok

95,6 A Avea: 2 activated. Type: Temparaiire
96,6 8t Ares: 2 activated. Type: Temparative
98,64 Area; 2 actvated, Type: Temperatire

98,6 4 Area: 2 activated. Tyoe: Temperaiire

Figure 54: Recent Alarms
Recent events with Cause and Date/Time highlighted for easier recognition.

· Building/Area Selection

The Area list is dynamically populated from the DB using AJAX as soon as the user changes the building from the dropdown menu.
[image: image59.png]Gk on e 1o Womiors

Chck on ares t Horior:

Sttant 7|

s122
5123
s203

ik an ores 1 Horior

Maonzon

-203
w20

G sres oo
Crardon

cH22a
cH-225

Figure 55: Dynamically populated lists
· Area/Camera Interface

This part of the page responds to the different inputs supplied to the monitor page. The cameras are clickable and the image that appear under it was created dynamically using AJAX. The “live” issue arose from the fact that there is no ASP Video object and a Flash player could not be used because of the encoding of the stream. Therefore using an object called UpdatePanel we solved this issue refreshing only the image and not rendering the whole page again.

[image: image60.jpg]

Figure 56: Camera Stream
· Dynamically created and populated tables

In many parts of the web site tables were used to display data these have a custom formatted header and paging included on the header. The use of the paging feature in ASP makes rendering easier by only displaying a small set of results and keep the rest on the server ready for loading. This technique is commonly used in sites were very big sets of data are dealt with (i.e. Google.com), also by minimizing the amount of rows we keep our vertical perspective along the whole page avoiding having to scroll more.

[image: image61.jpg]sensor D ‘Sensor Name. Tvpe. Status —— Sensor Data ‘Manufacturer
3 Sensitemp 2005 Tempscatwre onlne s sensicon
s SmokeDetect 1000 Sk orine on SmakyCorp

Stotus 17 Address Login User Login Password
1 s122 Zonet 2vC Onine. 136145562 castone capstone

Figure 57: Sensor and camera information
Dynamically created and populated area consisting of many queries brought as two datasets.

[image: image62.jpg]

Figure 58: Generated Alarms
Paging feature, allows faster rendering for client.

· User Info (Areas Assigned)

Other object can be dynamically populated too; we used labels as data container for the user information page.

[image: image63.jpg]User 10:1
username: wil
Name: Willam

Last Name: Sanchez

E-mail
Wita.maya@gmailcom

Phone Number: 7876568656

Phone Carrier: Clarosi

Figure 59: User Information
This label displays the dynamically populated user information.

3.3. Data Base

This section presents the database design for the Smart Surveillance Technology (SST) System. It explains the database implementation, the data description of the different database entities, the relationships that exist between these entities and the mapping between the ER diagram and the SQL tables.

3.3.1. Implementation

The database schema was implemented by using MySQL. MySQL is a relational database management system (RDBMS) [2]. The MySQL Workbench tool, a visual database design and modeling tool was used to conceptualize the designs of the database.
3.3.2. Data Description

Following is a description of the entities used in the Data Base. A description of each of the attributes of the entity is included.

· Entities
· User – This strong entity describes an user of SST in the company. The user will be able to log in the web interface to monitor assigned areas.

a. user_id – The user’s id. This id will be given by the company.

b. user_username – Represents the user name used to log into the system

c. user_password – Represents the password that the user uses to log in the system

d. user_first_name – The user’s first name.

e. user_last_name – The user’s last name.

f. user_email – The user’s e-mail.

g. user_phone - The user’s phone number.

h. user_phone_carrier - The user’s phone company.

i. user_role – represents if an user is an administrator or a normal user (“1” for user)

· Administrator – This strong entity represents an administrator of SST in the company. The administrator inherits all the attributes of a user, but has the attribute of user_role set to “0,” that distinguish him/her from the user. The difference between a user and an administrator is that the user can only log to the web interface to monitor assigned areas, while the administrator can configure, make changes to SST and also monitor areas.

a. user_id – The user’s id. This id will be given by the company.

b. user_username – Represents the user name used to log into the system

c. user_password – Represents the password that the user uses to log in the system

d. user_first_name – The user’s first name.

e. user_last_name – The user’s last name.

f. user_email – The user’s e-mail.

g. user_phone - The user’s phone number.

h. user_phone_carrier - The user’s phone company.

i. user_role – represents if an user is an administrator or a normal user

· Cellcompany – This strong entity represents the cell phone company to which text messages are send

a. coid – The id of the cell phone company

b. cellname – The name of the cell phone company

c. predicate – The predicate necessary to make a text message in the cell phone.

d. device - This strong entity represents a device that contains the sensors

e. device_id - The device’s id. Each device has a unique id

f. device_name - The device’s name. Each device has a unique name. This is used for quick identification of the device.

g. device_capacity – The capacity of the device, i.e, how many sensors it can handle

h. device_connection_type – The device connection type, ex., if the connection is of serial type or tcp/ip type

i. device_ip_address – The ip address of the device (in the case that the device connection type is tcp/ip)

· Sensor – This strong entity represents a sensor attached to a device

a. sensor_id – The sensor’s id

b. sensor_name – The sensor’s name

c. sensor_type - The sensor’s type

d. sensor_status - The sensor’s status

e. sensor_data - The sensor’s data

f. sensor_manufacturer - The sensor’s manufacturer

g. sensor_range_min - The sensor’s minimum range

h. sensor_range_max - The sensor’s maximum range

i. sensor_range_avg - The sensor’s average range

· Alarm – This strong entity represents a generated alarm in the SST system.

a. alarm_id – The id of the alarm

b. alarm_cause – The cause of the alarm

c. alarm_datetime – The date and time when the alarm occurred

d. alarm_status – The status of the alarm

· Company – The company that has the SST system

a. company_id – The id of the company

b. company_name – The name of the company

c. company_address – The address of the company

d. company_state – The state where the company is located

e. company_zip_code – The zip code of the company

f. company_phone – The phone number of the company
· Building- This strong entity represents a building that has the SST system

a. building_id – The id of the building

b. building_name – The name of the building

· Area – This strong entity represents an area that is monitored

a. area_id – The id of the area

b. area_name – The name of the area

c. area_path – The path on the server of the saved screenshots for that area

· Camera - This strong entity represents an IP Camera used in our system

a. camera_id – The id of the camera

b. camera_name - The name of the camera

c. camera_manufacturer – The manufacturer of the camera

d. camera_status – The status of the camera

e. camera_ip – The ip address of the camera

f. camera_path – The url used to get image streams of the IP camera

g. camera_login_user – The user name to login to view the camera streams

h. camera_login_password – The password to login to the IP camera

· Schedule – This strong entity describes a schedule in which the system will be monitoring and checking for alarm triggering.

a. schedule_id – The schedule’s id.

b. schedule_start_date_time - The schedule’s start date along with the time

c. schedule_end_date_time - The schedule’s end date along with the time

d. schedule_start_date - The schedule’s start date

e. schedule_end_date - The schedule’s end date

f. schedule_start_time - The schedule’s start time

g. schedule_end_time - The schedule’s end time

h. schedule_days_of_week - The days of the week that the schedule is enforced

i. schedule_repeats – How often does this schedule repeats. (weekly, monthly, yearly)

· Logs_changes – This entity will store a log when change to the system occurs

a. logs_changes_id – The id of the change

b. logs_changes_user_id – The id of the user

c. logs_changes_device_id – The id of the device

d. logs_changes_sensor_id – The id of the sensor

e. logs_changes_camera_id – The id of the camera

f. logs_changes_schedule_id – The id of the schedule

g. logs_changes_area_id – The id of the area

h. logs_changes_datetime – The date and time that the changes occurred

· Logs_alarms - This strong entity describes the logs of the generated alarms (deriving data from other tables)

a. logs_alarms_id – The log’s id

b. logs_alarms_datetime - The log’s date along with the time

c. logs_alarms_alarm_id – The id of the alarm being logged

d. logs_alarms_alarm_cause – The cause of the logged alarm

e. logs_alarms_alarm_status – The status of the alarm

f. logs_alarms_sensor_id – The id of the sensor that activated the alarm

g. logs_alarms_sensor_status – The status of the sensor that activated the alarm

h. logs_alarms_sensor_data – The data of the sensor when the alarm was activated

i. logs_alarms_sensor_type – The type of the sensor that activated the alarm.

j. logs_alarms_area_id – The id of the area where the alarm was activated

k. logs_alarms_camera_id – The id of the camera that captured images when the alarm occurred

l. logs_alarms_schedule_id – The id of the schedule that was active when the alarm was activated.

m. logs_alarms_device_id – The id of the device that was active when the alarm was activated.

n. logs_alarms_building_id – The id of the building where the alarm was activated.

· Relationships

Following is a description of the relationships that exist between the entities defined earlier. The attribute of each relationship and a description is included.

· Schedule_area – This relationship relates a schedule with an area

a. schedule_area_id – The id of the relationship

b. schedule_fromid – The id of the schedule

c. area_toid – The id of the area

· User_area - This relationship relates an user with its assigned area

a. user_area_id - The id of the relationship

b. user_fromid – The id of the user

c. area_toid – The id of the area

d. user_area_role – The role of the user

· Sensor_area – This relationship relates a sensor with an area

a. sensor_area_id – The id of the relationship

b. sensor_fromid – The id of the sensor

c. area_toid – The id of the area

· Company_building – This relationship relates a company with a building

a. company_building_id – The id of the relationship

b. company_fromid – The id of the company

c. building_toid – The id of the building

· Camera_area - This relationship relates a camera with an area

a. camera_area_id – The id of the relationship

b. camera_fromid – The id of the camera

c. area_toid – The id of the area

· Building_area – This relationship relates a building with an area

a. building_area_id – The id of the relationship

b. building_fromid – The id of the building

c. area_toid – The id of the area

· Device_area – This relationship relates an a device with an area

a. device_area_id – The id of the relationship

b. device_fromid – The id of the device

c. area_toid – The id of the area

· Alarm_device – This relationship relates an alarm with a device

a. alarm_device_id - The id of the relationship

b. alarm_fromid – The id of the alarm

c. device_toid – The id of the device

· Device_sensor – This relationship relates a device with a sensor.

a. device_id – The id of the device

b. sensor_id - The id of the sensor
3.3.3. Relational Model

Following are the Entities and relations mapped to SQL tables.

· E-R to Relational Tables
· alarm (alarm_id integer, alarm_cause varchar(45), alarm_status varchar(45), alarm_datetime datetime)
· alarm_device (alarm_device_id integer, alarm_fromid integer, device_toid integer)
· area (area_id integer, area_name varchar(45), area_path varchar(100)
· building (building_id integer, building_name varchar(45))
· building_area (building_area_id integer, building_fromid integer, area_toid integer)
· camera (camera_id interger, camera_name varchar(45), camera_manufacturer varchar(45), camera_status varchar(45), camera_ip varchar(25), camera_path varchar(100), camera_login_user varchar(45), camera_login_password varchar(45))
· camera_area (camera_area_id interger, camera_fromid interger, area_toid interger)
· camera_storage (camera_storage_id interger, camera_storage_image longblob)
· cellcompany (coid interger, cellname varchar(45), predicte varchar(45))
· company (company_id interger, company_name varchar(45), company_address varchar(100), company_state varchar(45), company_zip_code varchar(45), company_phone varchar(45))

· company_building (company_building_id interger, company_fromid interger, building_toid integer)
· device (device_id integer, device_name varchar(100), device_capacity varchar(45), device_connection_type varchar(45), device_ip_address varchar(25))

· device_area (device_area_id integer, device_fromid integer, area_toid integer)

· device_sensor (device_sensor_id integer, device_fromid integer, sensor_toid integer)

· logs_alarms (log_id integer, logs_alarms_datetime datetime, logs_alarms_alarm_id integer, logs_alarms_alarm_cause varchar(45), logs_alarms_alarm_status varchar(45), logs_alarms_sensor_id integer, logs_alarms_sensor_status varchar(45), logs_alarms_sensor_data varchar(45), logs_alarms_area_id integer, logs_alarms_camera_id integer, logs_alarms_schedule_id integer, logs_alarms_device_id integer, logs_alarms_building_id integer, logs_alarms_sensor_type varchar(45))

· logs_changes (logs_changes_id integer, logs_changes_user_id integer, logs_changes_device_id integer, logs_changes_sensor_id integer, logs_changes_camera_id integer, logs_changes_schedule_id integer, logs_changes_area_id integer, logs_changes_datetime datetime)

· schedule (schedule_id integer, schedule_start_date_time datetime, schedule_end_date_time datetime, schedule_start_date date, schedule_end_date date, schedule_start_time time, schedule_end_time time, schedule_day_of_week varchar(100), schedule_repeats varchar(45))

· schedule_area (schedule_area_id integer, schedule_fromid integer, area_toid integer)

· sensor (sensor_id integer, sensor_name varchar(45), sensor_type varchar(45), sensor_status varchar(45), sensor_data varchar(45), sensor_manufacturer varchar(45), sensor_range_min float, sensor_range_max float, sensor_range_avg float)

· sensor_area (sensor_area_id integer, sensor_fromid integer, area_toid integer)

· user (user_id integer, user_username varchar(45), user_password varchar(45), user_first_name varchar(45), user_last_name varchar(45), user_email varchar(100), user_phone varchar(45), user_phone_carrier varchar(45), user_role integer)

· Relations not mapped to a relational table

· device_sensor – Because the relationship can be obtained from relationships: device_area and sensor_area, since an area will be defined by having a device, and by doing a query to both device_area and sensor_area we can obtain the sensors that pertain to a device.

· stores_image – Because the relationship is 1 to N between the camera entity and the camera_storage entity.

· stores_alarms – Because the relationship is 1 to N between the alarm entity and the logs_alarms entity. Hence, the attribute logs_alarm_id was added to the logs_alarm entity, which references the alarm_id of the alarm entity.

· user_cellcompany – Because the relationship 1 to N between the user and the cellcompany entity.
3.3.4. SQL Queries

The following part lists the queries design to be used in the SST system.

Login:

SELECT * FROM user WHERE user_username='" + username + "' AND user_password='" + password + "';
Buildings:

SELECT * FROM building;

Areas from [X] building:

SELECT area_name FROM area where area_id in (SELECT area_toid FROM building_area where building_fromid= Any (SELECT building_id FROM building where building_name='[X]'));

Sensor data from [X] Area:

SELECT * FROM sensor where sensor_id in (SELECT sensor_fromid FROM sensor_area where area_toid= Any (SELECT area_id FROM area where area_name='[X]'));

Cameras IP’s from [X] Area:

SELECT camera_ip FROM camera where camera_id in (SELECT camera_fromid FROM camera_area where area_toid= Any (SELECT area_id FROM area where area_name='[X]'));

Logs:

SELECT * FROM logs_alarms;

SELECT * FROM logs_changes;

Search alarms by date

SELECT * FROM logs_alarms WHERE logs_alarms_datetime BETWEEN '[X]' AND '[X]';
Search alarms by device (id)

SELECT * FROM logs_alarms where logs_alarms_device_id='[X]';

Search alarms by area (id)

SELECT * FROM logs_alarms where logs_alarms_area_id='[X]';

Search alarms by sensor (id)

SELECT * FROM logs_alarms where logs_alarms_sensor_id='[X]';

Search alarms by alarm (cause)

SELECT * FROM logs_alarms where logs_alarms_cause_id='[X]';

Search alarms by building (id)

SELECT * FROM logs_alarms where logs_alarms_building_id='[X]';

 Search alarms by area (name)

SELECT * FROM logs_alarms where logs_alarms_area_id in (SELECT area_id FROM area where area_name='[X]');

Search alarms by building (name)

SELECT * FROM logs_alarms where logs_alarms_building_id in (SELECT building_id FROM building where building_name='[X]');

Search users by (Id)

SELECT * FROM user where user_id='[X]';

Search users by (name)

SELECT * FROM user where user_name='[X]';

Search users by assigned (area)

SELECT * FROM user where user_id in (SELECT user_fromid FROM user_area where area_toid= Any (SELECT area_id FROM area where area_name='[X]'));

Search users by building (name)

SELECT * FROM user where user_id in(SELECT user_fromid FROM user_area where area_toid= Any (SELECT building_fromid FROM building_area where area_toid= Any (SELECT building_id FROM building where building_name='[X]')));

Search users by (role)

SELECT * FROM user where user_role='[X]';

Latest News

SELECT * FROM logs_alarms where logs_alarms_datetime <= NOW()

order by logs_alarms_datetime DESC limit 5;

Inserting an user:

INSERT INTO `user` VALUES([user_id],'[user_username]','[user_password]','[user_password]','[user_first_name]','[user_email]','[user_phone]','[user_phone_carrier]',[user_role]);

Ex.

INSERT INTO `user` VALUES(0,'avelez','avelez','Alberto','Velez','avelez@gmail.com','7872423333','Claro',1);

Assign an area to a user:

INSERT INTO user_area VALUES([user_area_id],[user_fromid],[area_toid],[user_area_role]);

Ex.

INSERT INTO user_area VALUES(0,3,2,0);

The first 0 refers to the relationship ID, it is leaved as 0 because the table is set to auto-increment the id, the id of the new user will be the ID of the last user plus 1. The second argument 3 refers to the id of the user. The third parameter 2 refers to the area of assignment. The last parameter 0 refers to the role of the user being assigned to the area (in this case an administrator).

3.3.5. ER Diagram

Following is the ER diagram designed for the SST Data base.

[image: image64.emf]user

user_password

user_first_name

user_last_

name

user_email

user_phone_

carrier

user_role

user_id

user_username

user_phone

ISA

Administrator

area

area_id

area_name

user_area

N

N

camera_area

camera

camera_id

camera_name

camera_manufacturer

camera_status

camera_ip

camera_path

camera_login_user

camera_login_password

1

N

device

device_id

device_name

device_capacity

device_connection_type

device_area

1

1

sensor_area

sensor

sensor_id

sensor_name

sensor_type

sensor_status

sensor_data

sensor_manufacturer

sensor_range_min

sensor_range_max

sensor_range_

avg

1

N

device_sensor

N

1

schedule

schedule_id

schedule_start

_date_time

schedule_end_date

_time

schedule_start_date

schedule_end_date

schedule_start_time

schedule_end_time

schedule_area

N

1

building

building_id building_name

building_area

1

N

company_building

company

company_id

company_name company_address

company_state

company_zip_code

company_phone

N

1

alarm

alarm

_id

alarm_cause

alarm_status

alarm_datetime

alarm_device

1

N

logs_alarms

logs_changes

cellcompany

COID

cellname

predicate

user_cellcompany

N

1

Admin_changes

1

N

logs_changes_id

logs_changes_device_id

logs_changes_sensor_id

logs_changes

_camera_id

logs_changes

_schedule_id

logs_changes

_area_id

logs_changes

_datetime

stores_alarms

log_id

logs_alarms

_datetime

logs_alarms

_alarm_id

logs_alarms_

alarm_cause

logs_alarms_

alarm_status

logs_alarms_sensor_id

logs_alarms_sensor_status

logs_alarms_sensor_data

logs_alarms_area_id logs_alarms_camera_id logs_alarms_schedule_id

N

1

Device_ip_address

schedule_day_of_w

eek

schedule_repeats

Normal

User

Figure 60: SST ER Diagram
4. Demonstration of Progress - Hardware

4.1. Block Diagram

The following figure represents the block diagram of the hardware part of our system. Specifying their requirements in voltage, current, and how many I/O pins is need.

[image: image65.png]Power

Supply < Specifications:

Voltage: 9V

Current:
Inputpins: 2

OP-AMP Outputpins: 0

Circuit

Temperature

Sensor . —
3 Serial Communication

Microcontroller 4

TT MSP430F149
2
Specifications:
Voltage:

2 Specifications:

TTL-232R-3V3

Current:
Voltage: 3.3V

Inputpins: 0

Output pins:

Fire

Sensor

T

Specifications:
Voltage:
Current:
Inputpins: 2
Output pins: 0

Buzzer

(Sound Alarm)

Specifications:
Voltage:
Current:
Inputpins: 0
Output pins: 2

Current:
Inputpins: 2

Output pins: 1

Figure 61: Hardware Block Diagram

4.2. Design specifications

a. Temperature Sensor- Since there are many sophisticated types of equipment that are highly sensitive to temperature, our system will have the ability to detect if it enters on a range of danger. Our possible solution is a digital temperature sensor. Some of its features are:
· Is capable of reading temperatures with a resolution of 0.0625°C.

· Resolution: 9- to 12-Bits, User-Selectable
· Low quiescent current: 50 µA, 1.5 µA
[image: image66.png]R
wncl | 2|
[
| [| f e

Pt ‘
wedf bl
| [
o

Figure 62: Digital Temperature Sensor
b. Fire Sensor – The smoke sensor, like the other sensors, helps us to protect the desired equipment. This sensor has the task of detecting if there is smoke, so it will be able to detect fire. A smoke detector is a sensitive system to the presence of particles of combustion (smoke) dispersed in the air. The smoke sensor is going to send a logical “1” to the microcontroller when detects smoke.
[image: image67.png]//MM/&\

Figure 63: Smoke detector
c. Alarm (buzzer) - The alarm will have the task of releasing sound when the microprocessor sends the signal which means that there is some sort of danger to the equipment. The buzzer features are:
· Voltage range: 3 – 28V DC

· Rated voltage: 12V DC

· Current Consumption: 5mA max at 12V

· Sound pressure level: 86dB min at 30cm/12V DC

· Frequency: 3500 + 500 Hz

The buzzer is going to receive a logical “1” from the microcontroller and activate the alarm sound.

[image: image68.png]Buzzer

Figure 64: Buzzer (Sound Alarm)
d. Microcontroller – The microcontroller will work with the communication between the other parts of the SST system. It will send the information of the sensors to the computer. Also receives information from the computer detects any kind of danger to the equipment. Some of its features are:
· Low Supply-Voltage Range, 1.8 V to 3.6 V

· Ultralow-Power Consumption:

· Active Mode: 280 µ A at 1 MHz, 2.2V

· Standby Mode: 1.6 µ A

· Off Mode (RAM Retention): 0.1 µ A

· Five Power-Saving Modes

· Wake-Up From Standby Mode in less than 6μs

· 16-Bit RISC Architecture, 125-ns Instruction Cycle Time

· 12-Bit A/D Converter With Internal Reference

· Serial Communication Interface (USART), Functions as Asynchronous UART or Synchronous SPI Interface

[image: image69.png]Microcontroller MSP430F149

Figure 65: Microcontroller
e. Serial Communication TTL-232R 3V3- The TTl-232R 3V3 is a USB to Serial (TTL level) converter cable which allows for a simple way to connect TTL interface devices to USB. This version of FTDI’s USB to TTL serial adapter cables has its I/O pins configures to operate at 3.3V levels. Some of its features are:

· Connect directly to a microcontroller UART (Universal Asynchronous Receiver/Transmitter) or I/O pins.

· UART interface support for 7 or 8 data bits, 1 or 2 stop bits.

· Data transfer rates from 300 baud to 3Megabaud at TTL levels.

· Low USB bandwidth consumption.

[image: image70.png]TTL-232R 3V3

Figure 66: Serial Communication Cable
4.3. Hardware Implementation details

a. Microcontroller I/O connections –For the connections of I/O we need the general purpose ports that the microcontroller provides. The following are the inputs connections of the microcontroller: temperature sensor, smoke sensor, and serial communication RX. While the following are the output connections: the alarm and serial communication TX. In addition, all the devices share the connection of ground.

[image: image71.png]] Prancx

PanTan
PaSTES

Figure 67: Microcontroller pins
b. Connection between Microcontroller and Computer Server – For this connection we used serial Communication. For the serial communication we need to connect to the microcontroller pins RX and TX of the TTL-232R 3V3, and connect the GND to the common ground of the microcontroller.
· TTL-232R Pin Out
[image: image72.png]‘TTL-232R Pin Out and Signal Descriptions

TTL232R Pin Out
Voo

caBLe

o nanar
e pion

BRowN
ke

Figure 68: TTL-232 Pin Out
· Connection Schematic
[image: image73.png]=3

frons—

MSPSAFL

P25/ ROSC

Figure 69: UART connection schematic
· Connection between Microcontroller and Computer Server Prototype
[image: image74.jpg]

Figure 70: UART connection prototype
· Software

[image: image75.png]10 mov.u s0A00m, P 5 Tnizializa o1 Registra Stask Pointer

L%eoWT movu WIDTPNLDTEOLD, SUSCTL ; Fae pacac < dateh Tog Tamer

[e

iaserupsc bian gbcoe, aacscriz i BCSCTLZ a3 =1 registra de concral dei sisvems gel seiey

15 £ DCOR (digitalty-consrollad cociilator) sa wn biv de sete

20 besln ptias, sy e p— oebie char

a e assEL, soTCTLO £ UTTO TmARTD Teanswie Registar DGR = SKCU

= rov's 4000, ciBes0 £ USR - Saut Bate Contzol Bagister) 2Mi: 9100

2 v yoos, emenio £ BERL0 wautation conteol Registes. Facecls w cleas

= [Ty ———

2 bies yswsT, cooTio 200 024RTD Control Rusister, Tnitialise USIBT stace mchize

= [S © 5o1 tmeerene 7isg fegiocer, franie AT £ theocrope
mov.w #350000n, é0202h ; councer

[image: image76.png]e it SUTEINGO, G1FGL PR —
#0001z, soze0k ¢ lurento uio para conseguir proxim caracter
#Buzzer © Subritine paa sonac el buzsec

TreruwPl bis.b 400D, GPADIR ;PaC subls

0 xorlb 40001, GPioT $Toggle P10

Sibusserz s 000In, a0zozn + becrementar el convator

sz juz Buszerz

= xor.h 4000, cPioUT sToggle P10

0 Roviu #1000k, 402021 5 Ineralizar el counter nuevensnte

@ Lshort RESET 7

5 end - h

Figure 71: UART Software
· Testing – To prove the communication between the microcontroller and the computer, we used the hyper Terminal. Another test that we used to prove the communication is with a program in the MAS.
[image: image77.png]De 55 T &

0123456789

/ORBCDE GHL KLHNOPD_

Figure 72: Hyper Terminal Testing
[image: image78.png]

Figure 73: MAS Interrupt Testing
c. Fire Sensor Connection – For the connection of the smoke sensor, was found the voltage signal when the smoke is detected. This signal is going to be use like an interrupt to the microcontroller. This interrupt is going to send the information to the microcontroller and then the microcontroller sends the information of the smoke detection to the MAS. As the voltage signal is approximately 6 volts and the microcontroller handles approximately 3.6 volts, for this connection we have to design a circuit to reduce the voltage. We are considering use a voltage regulator for this problem.
[image: image79.jpg]

Figure 74: Smoke detector connection
d. Alarm Connection – The buzzer is connected to one pin of the microcontroller and when there is any detection of alarm, the microcontroller sends a signal through this pin and the buzzer is going to sound.
· Connection between microcontroller and buzzer Schematic

[image: image80.png]

Figure 75: Schematic of n microcontroller and buzzer connection
· Connection between Microcontroller and buzzer Prototype

[image: image81.jpg]

5. Projection
[image: image82.jpg]

Figure 76: Microcontroller and buzzer Prototype

6. Integration Efforts

6.1. Integration Techniques

Collaboration has never been easy especially on large projects for this reason the software for the project and even the design documents have been shared and merged using CVS (Concurrent Versions System), specifically Tortoise SVN for this task. This makes the acceptance of another’s code into your code and vice versa easier. At the beginning and outside server was used (Assembla.com) then later the campus server (capstone.ece.uprm.edu).

Also centralizing resources using only one machine as the database helped us to avoid error with incongruent data from different versions of the DB.

6.2. Project Integration

For the integration of the project as a whole some steps have being made. The web page was designed so it could be run directly from DB data making it less prone to errors in code and self-sustainable. The communication between microprocessor and server computer is being designed in such a way that it could be extrapolated to TCP/IP communication with minimum effort. The communication has been designed as a packet communication with all the necessary parts for TCP/IP encapsulation including header, trailer, and data (this includes extra bits for future expansion).

7. Budget

The initial budget analysis for SST project implementation has changed through time. Hardware components have been less expensive than estimated but when revisiting the estimation of the personal resources and their hours worked, there has been some discrepancy. In order to overcome some tasks that were in the critical path of the Gantt chart and don’t fall behind within the dates the team promised, there was a need to work more hours.
7.1. Hardware

	Component
	Description
	Qty.
	Price
	Cost

	Microprocessor
	DEV-00046 Header Board for MSP430F149
	1
	$22.95
	$22.95

	Cable for Programming
	MSP-JTAG Parallel Port Programmer
	1
	$14.95
	$14.95

	Alarm
	130db Personal Security Alarm
	2
	$11.99
	$23.98

	Heat Sensor
	E52-THE5A- 0/100C
	2
	$30.47
	$60.94

	Smoke Detector
	DD-4018 Smoke Detector
	2
	$29.38
	$58.76

	Camera
	Hercules 4780465 1.3 MP
	1
	$21.99
	$21.99

	
	Total Hardware Cost
	$203.57

Table 17: Proposed Hardware Components
	Component
	Description
	Qty.
	Price
	Cost

	Microprocessor
	DEV-00046 Header Board for MSP430F149
	1
	$22.95
	$22.95

	Cable for Programming
	MSP-JTAG Parallel Port Programmer
	1
	$14.95
	$14.95

	Alarm
	86dB Buzzer Alarm
	1
	$4.50
	$4.50

	Heat Sensor
	TI IC DGTL Temp Sensor
	2
	$2.38
	$4.76

	Smoke Detector
	Universal Smoke and fire alarm
	2
	$5.00
	$10.00

	Camera
	Zonet ZVC7610
	1
	$77.00
	$77.00

	
	Total Hardware Cost
	$134.16

Table 28: Revised Hardware Components

There was a need to change the surveillance interface from a web cam to an IP Camera in order to make our project a more competitive in today’s market. Using IP cameras will give us an advantage to use the local area network established in the company besides that free us of the constraints of using the PC USB ports to connects the cameras since IP cameras can be plugged on any RJ-45 connector (Ethernet 802.3 standard). Alarm buzzer, heat sensor and smoke detector where buy in local stores (rather than ordering them online), but with similar specifications as the one proposed, thus saving the team money and time.

Difference of revised and proposed hardware budget:

$69.41 in savings of the proposed hardware components.
7.2. Personal Engineer Resources

An initial estimation was presented of a 15 hours per week work load for each of the resources working on the project. This approach was made on the basis that each member of the group has at least 12 credits in college and need a certain amount of time for their own. This quantity was almost double as an estimate of 28 hours per week was computed. The main reason was that there were some trivial tasks assigned that were on the critical path of the Gantt chart. This meaning that is one of the tasks there were delay, the whole project could be placed in jeopardy to not be completed on time. As mitigation for this possible risk, engineer resources worked more than they were asked so the project could be released on time. The following is the current average resources salary until October 29, 2008.

	Person
	Hours/Week
	Salary/Hour
	Salary

	Mariel Martinez
	15
	$23.06
	$2,421.30

	Abraham Diaz
	15
	$20.83
	$2,187.15

	William Sanchez
	15
	$20.83
	$2,187.15

	Javier Ocasio
	15
	$26.81
	$2,815.05

	
	
	Total
	$9,610.65

Table 39: Proposed Budget

	Person
	Hours/Week
	Salary/Hour
	Salary

	Mariel Martinez
	28
	$23.06
	$4,519.76

	Abraham Diaz
	28
	$20.83
	$4,082.68

	William Sanchez
	28
	$20.83
	$4,082.68

	Javier Ocasio
	28
	$26.81
	$5,254.76

	
	
	Total
	$17,939.88

Table 410: Revised Budget
With the amount of hours almost doubled and consumed $8,329.23 than expected (75% of overhead expected expenses), the revised budget has already surpass the proposed salary total, that was $15,003.35. In order to mitigate the possible risk of exceeding the total project cost, we will aim to lower the hours per week workload to 15 hours for the 5 weeks left of the project development, giving us a possible salary cost total of $6,864.75, finishing the project with a 5% more than expected cost.

8. Future Work

As explained in the Gantt Section, we are up to date with the Gantt chart. In terms of milestones to date, the SST project has successfully completed Phase 1: Problem Definition, by writing the proposal of the project and presenting the project in the first Oral presentation. SST also successfully completed Phase 2: Data Base and Microprocessor to computer communication, which included the first Happy Hour. The project is currently working in Phase 3: Sensor data collecting. The remaining two phases are Phase 4: Final Prototype and testing, and Phase 5: Final Documentation. If the project keeps up at the current pace, the VST group should be able to finish the proposed system in time and with the promised functionalities.

9. References

[1] .NET Framework (n.d.). Retrieved 09 15, 2008, from Wikipedia: http://en.wikipedia.org/wiki/.net_framework
[2] ICOM5016 Introduction to Database Systems. (n.d.). Retrieved 09 26, 2008, from Manuel Rodríguez: http://www.ece.uprm.edu/~manuel/class/fall05/icom5016/projects.htm
[3] Hypertext Transfer Protocol. (n.d.). Retrieved 09 15, 2008, from Wikipedia: http://en.wikipedia.org/wiki/HTTP
[4] Ajax (programming) (n.d.). Retrieved 09 15, 2008, from Wikipedia: http://en.wikipedia.org/wiki/Ajax_(programming)
10. Appendix
10.1. A: Gantt Chart

System Definition

[image: image83.png]\har
e

WBS @ TaskName % | Duration | Start | Finish

7,08 Aug 24,708 Aug 31,08 Sep7, 08 Sep 14,08 Sep 21,08
Compite TIWITTF[S[S[M[TWITIF[SSIW[TIWIT[FIS[S [WITIWITTF[S[S[W[TWITIF[SSIW[TIWIT]
1 5 Smart Surveillance Technology 54% | 665 days | S1BI08 | Mon 1211108 | e
1y VST Proect Start 100%| 0days) 81808 Mon 8118108 (118
12y 5 System Definition 100% | 16 days | G180 Wed 91008 | —
121)y Wite SOW 100% 6 days| 1805 Mon 52505 Javier Ocasio[50%] Mariel Martinez[50%] Abraham Diaz[50%1Wiliam Sanchez(50%]

122 Present SOW to Customer 100% 1day G608 Tue &26008 Javier Ocasio[50%] Mariel Martinez[50%],Abraham Diaz[50%] Wiliam Sanchez[50%]
123 Wrte Propoosal 100% 10 days - a2608 Wed S/10108 Javier Ocasio[50%] Mariel Martinez(50%],Ab
124y Create Presentation | 100%| 9days 827108 Wed 9110108,

Javier Ocasiof50%] Mariel Martinez[50%] Ab

Figure 77: Gantt System Definition
Software: Main Application Service
[image: image84.png]WBS | @ |Task Name % | Duration | Start ‘ Finish |Predec Sep 28,08 Oct 5,08 Oct 12,08 Oct 19,08
complete TIF[S/S M [T WITIFIS[S M T WITIF[S[SM|T WITIF[S]S MIT W
13) System Development 67% 50days 911108 Mon 121108
131 © Software 1% 50 days | 911108 Mon 121108
1314) Main Application Service 54% 50 days | 911108 Mon 121108
13114y Main Application Design Documert 100% 3days 9M1M Mon9MSMB 7 fer Ocasiols0%]
13112,y Decode Cameraimage 100% 18 cays 9M6ma Frif0nOmS 11 chezl50%]
13113 Collct Microcortroler deta 0% Sdays 11B0B Thu 117308 51
13114 ety Micro deta for activating system dlerm 0% 6 days 111408 Mon 1172418 13
13115y Compare imsges for mation detection 100% 5 days 102208 Tue 1072808 13
13116 Upload ive streaming inages to We Interface 0% Gdays 102908 Fi 117108 15
13117 Store concurrenly information colected from Micro 0% Sdays 1408 Fri 112108 13
13118 Sent SHMS Message for lert 0% 7days 117008 Thu 112008 16
13119y Adninistrtor terface 100% 5 days 10458 Tue 1021108 12,50
131410 Software Testing and debugging 0% 3oays 1172508 Mon 121108 14

Figure 78: Main Application Service
Software: Web Development

[image: image85.png]Task Name. % | Duration | Start | Finish

Sep21, 08 Sep25,08 0ct5, T8 0ct 12,108 0ct 16,108 0ci25
compite S[S[W[TW[TIF[S|S [N [TIWIT[FIS[S[W[TIW[TIF[S|S[W [T WIT[FIS[SM[TWITIF[S[S[M]
5 Vieb Development 1 60% 45days 911108 Tue 112508
Web Apphcation Design Dacument 100% 4days 9108 TueNMEI08 Jcasiols0%]Abraham Disz

Tools Configuration 100% |4 days 10/15108] Hon 1020108
Web nterface design 100% | 17 days | 9117108 Fri10/10108
Securty Logn 100% 6 days 10/15108| Wed 1022108
Live Stream web page 50% 8days 1023008 Wed 11/5/08
Information display web page 100% 6days| 11608 Fri11/14108
Web testing and debugging 0% Bdays 1117108 Tue 11725008

=

2
=
2
=
3
Bl
3
»

Figure 79: Gantt Web Development
Software: Data Base Development
[image: image86.png][50%] Wi

[50%]

WBS @ TaskName % | Duraton | Stat | Finish Sep 28,08 Octs, 08 Oct 12,08 Oct 19, 08 0ct26,0
Compite FIS[S[M[TIWT[F[S[S[W [T W[TIF[S|S[W T WIT[FIS[S[W[TWTIF[S|S[M[T]

ENEEEI 5 Data Base Development 100% 21 days S8 Fri 1010108 e—

3| 13131y Data Base Design Document 100% G days| 9/11I05 Thu 9/15/05 Willam Sanchez[s0%] P

2 | 13132y ER Diagram 100% 3days 19119108 Ved 9126108 braham Diaz[50%],Javier Ocasiof50%]

B | 13133 Tables. 100% Tdoys SS0S P 10700 P Abcaham Diaz[50%]Javier OcasigIs0%]

3| 13134y ‘Query Design 100% Sdays| 106008 Fri10/10008 === Abraham Di

| &

Figure 80: Gantt Data Base Development
Hardware: Original
[image: image87.png]WBS (@ [TaskName = s e Finish [Sep 74,08 Sep21,108 S92, ot 06
compite SN [T IWIT[FIS[S[M[TIW[T[F[S|S[W[TW[T[F[S[S [N [T WITF]
3 132 5 Hardware. 4% 47days| Thu 911108 Mon 11724108
® | 1321 Hardware design document 100% Sdays| ThuSITII0B Vied 917105 Mariel Martinez[50%]Javier Ocasiof50%]
7| 13220y Buy required Hardware 100% 8days| ThuS/1B08 Tue 873008
B 1323 ‘Connection between icro , temperature, fre(smoke) and alarm 0% 5 days|ed 10/15/08] Tue 1021108
B | 1324y ‘Connection between icro and Server Computer 100%) 8days| Wed 101108 Fri10/10/08
o 1328 Program icro for signais processing 0% Bdays|ed 1022008 Fri 10331108
a 1326 Create fogic crcut for alarm connection 0% Gdays| Thu 111608 Fri11/14108
2 1327 Hardware/Software Tune Up 0% 5 days|Mon 11/17108) Mon 11724108
@ 1228 Complete Prototype Testing 0% 5days Mon 11/17/08 Mon 11724108

Figure 81: Gantt Hardware: Original
Hardware: Revised
[image: image88.png]wes @

Task Name

% Duration Start Finish
Complete

Sep 25, 06

Oct5, 08

0ct 12,08

0ct 19,08

0ct26,0

FIS[S[M[TW[TIF[S

S[H[TWIT[F[S

SIH[TWIT[F[S

ST WIT[F[S

S[W[T]

3 132 = Rardwiare.
% | 1321y Raraware cesign document

7| 1322y Buy required Hardware

| 1323F ‘Connection between licro, temperature , fre(smoke) i 25°
M | 1324y ‘Connection between Hicro and Server Computer

© | 1325F Programfiro for signais processing

“ 1228 Create logic cirut for alarm connection

2| 1321 Haraware/Software Tune Up.

@ | 1328 Complete Prototype Testing

] s sadeys snis

T 100

100%

#

1

R

Sdays 911108
8days 91808
5 days 1024108
8days| 10/1/08
6 days 1031108,
5 days 1113008
3days 121108
3 days 11721108

Tue 1172508
Wed 917108
Tue 8730108
Thu 1013008,
Frit01008,

Wed 11112108
Thu 1172008
Tue 11125708
Tue 11725108

‘avier Ocasio[50%]

Figure 82: Hardware: Revised
10.2. Web Application Diagrams

Administrator Use Case Diagram

[image: image89.emf]Monitor Areas

View Logs

Access Web

Application

Login

Logout

Administrator

View Camera Stream

View Sensors Data

Search Alarm by ID

Search Alarm by Date

Search Alarm by Type

Users

Search Users by ID

Search Users by

name(first, last)

Search Users by

assigned area

Search Alarm by Area

Search Alarm by

Building

Search Users by

name(first, last)

Search Users by

building

Search Users by

username

Search Users by email

Search Users by role

Users

User Info

Figure 83: Administrator Use Case Diagram
User Use Case Diagram

[image: image90.png]View Camera Stream

View Sensors Data
View Logs

Search Alarm by ID
Search Alarm by Date

Soarch Alarm by Type
Search Alarm by Area
User

earch Alarm b

@ Building

Access Web
Application

Figure 84: User Use Case Diagram
Web Application Package Diagram
[image: image91.png]Client

Web Service

Processing '

Figure 85: Web Application Package Diagram
20

_1286465546.vsd
Init Camera Object

Fetch camera IP

Prepare HttpWebRequest Object

Read Stream and store into
bytes array

Create Bitmap from Stream

detectMotion()

Sleep
 1000 ms

Is process alive?

Yes

Dispose Camera Object

No

_1286596412.vsd
text

Button

Button

text

Main Application Service

AForge Framework

AForge Handler Class

_1286614239.vsd
user

user_password

user_first_name

user_last_name

user_email

user_phone_carrier

user_role

user_id

user_username

user_phone

ISA

Administrator

area

area_id

area_name

camera_area

N

N

user_area

camera

camera_id

camera_name

camera_manufacturer

camera_status

camera_ip

camera_path

camera_login_user

camera_login_password

1

N

device

device_id

device_name

device_capacity

device_connection_type

device_area

1

1

sensor_area

sensor

sensor_id

sensor_name

sensor_type

sensor_status

sensor_data

sensor_manufacturer

sensor_range_min

sensor_range_max

sensor_range_avg

1

N

device_sensor

N

1

schedule

schedule_id

schedule_start_date_time

schedule_end_date_time

schedule_start_date

schedule_end_date

schedule_start_time

schedule_end_time

schedule_area

N

1

building

building_id

building_name

building_area

1

N

company_building

company

company_id

company_name

company_address

company_state

company_zip_code

company_phone

N

1

alarm

alarm_id

alarm_cause

alarm_status

alarm_datetime

alarm_device

1

N

schedule_day_of_week

schedule_repeats

logs_alarms

logs_changes

cellcompany

COID

cellname

predicate

user_cellcompany

N

1

Admin_changes

1

N

logs_changes_id

stores_alarms

logs_changes_device_id

logs_changes_sensor_id

logs_changes_camera_id

logs_changes_schedule_id

logs_changes_area_id

logs_changes_datetime

log_id

logs_alarms_datetime

logs_alarms_alarm_id

logs_alarms_alarm_cause

logs_alarms_alarm_status

logs_alarms_sensor_id

logs_alarms_sensor_status

logs_alarms_sensor_data

logs_alarms_area_id

logs_alarms_camera_id

logs_alarms_schedule_id

N

1

Device_ip_address

Normal User

_1286549104.vsd
Monitor Areas

View Logs

_1285258751.vsd
Configure

Edit

_1285418973.vsd
String: msUserName
String: msPassword
String: msUserFirstName
String: msUserLastName
String: msUserEmail
String: msPhone

User

List: moLAreaList
String: msBuildingName

Building

String: msAreaName
String: msAreaBuilding
String: msAreaBuilding
Device: moDevice
List: moLCamList
Schedule: moSchedule
List: moLUser

Area

String: msCameraName
String msCamManufact
String: msCamIP
String: msCamUserName
String msCamPassword

Camera

String msDeviceName
String msDeviceCapacity
String msDeviceConnType
String msDeviceIP

Device

DateTime oStartTime
DateTime oEndTime
String msDaysOfWeek

Schedule

String msSensorName
String msSensorType
String msSensorManufact
double mfSensorMin
double mfSensorMax

Sensor

ISA

Administrator

Assigns

Has

Monitors

Has

Has

Has

Has

Creates

Configures

Configures

